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ARTICLE INFO ABSTRACT

Aortic dissection represents a serious cardio-vascular disease and life-threatening event. Dissection is a sudden
delamination event of the wall, possibly leading to rupture within a few hours. Current knowledge and practical
criteria to understand and predict this phenomenon lack reliable models and experimental observations of
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Rupture rupture at the lamellar scale. In an attempt to quantify rupture-related parameters, the present study proposes an

Finite element model . P . .

Delaminati analytical model that reproduces a uniaxial test on medial arterial samples observed under X-ray tomography.
elamination

This model is composed of several layers that represent the media of the aortic wall, each having proper elastic
and damage properties. Finite element models were created to validate the analytical model using user-defined
parameters. Once the model was validated, an inverse analysis was used to fit the model parameters to ex-
perimental curves of uniaxial tests from a published study. Because this analytical model did not consider de-
lamination strength between layers, a finite element model that included this phenomenon was also developed
to investigate the influence of the delamination on the stress-strain curve through a sensitivity analysis. It was
shown that shear delamination strength between layers, i.e. mode II separation, is essential in the rupture

process observed experimentally.

Statement of significance

Most of existing models investigating aortic dissection phenomena
are at the macro-scale. In this work, we propose a lamellar-scale rupture
model based on published experiments. The model reproduces the ex-
perimental data with great accuracy and provides rupture values for
layers of the media and for delamination between these layers, which
are still scarce in the literature. Thus, this study provides a better un-
derstanding of the rupture mechanism involved in aortic dissection.

1. Introduction

Aortic dissection, a sudden delamination of the aortic wall in its
medial layer, is a life-threatening arterial event associated with a very
poor outcome, and requires rapid diagnosis and decision-making;
without intervention, up to 90% of patient with acute aortic dissection
die within weeks (Kouchoukos and Dougenis, 1997). As highlighted by
the review of Nienaber et al. (2016), dissection is usually thought to be
caused by an intimal tear in which the blood rushes and propagates in
the medial layer. Dissection can also be initiated at the site of an in-
tramural hemorrhage, which is thought to be less frequent. Aortic

dissection has an incidence of 35 cases per 100,000 people per year in
the 65-75 year-old age group. Hypertension, dyslipidaemia and genetic
disorders like the Marfan syndrome are known risk factors.

Despite its high mortality, few studies have tried to explain the
microstructural phenomena occurring during initiation and propaga-
tion of dissection in the aorta. Advanced mechanical analyses of the
underlying mechanisms, based on mechanical experiments as well as
structural observations at the micro- and meso-scales — these two being
possibly combined — would deeply improve the understanding of such
fatal event and could improve clinical decision-making criteria.

Regarding the architecture of the tissue, the medial layer is a
complex structure consisting of several lamellar units separated by
elastic laminae [25]. Each unit is mainly composed of elastin, collagen
and smooth muscle cells. Due to its organization, the media is weaker in
the radial direction, compared to the axial and circumferential direc-
tions (MacLean et al., 1999). Thus, it is prone to dissection separation.

Previous scientific work mainly involved macro-scale testing. Roach
and co-workers infused a fluid into the media at a constant flow, while
recording pressure and volume, in order to investigate the mechanisms
leading to aortic dissection (Carson and Roach, 1990). The measure-
ments showed that the peak pressure needed to dissect the aortic media
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was 77.2 = 1.5 kPa and the energy release rate needed to propagate the
dissection was 15.9 = 0.9 mJ/cm? Another study focused on radial
tensile and peeling tests to quantitatively assess the properties of the
medial layer (Sommer et al., 2008). The results showed that the energy
release rates measured in peeling were 5.1 = 0.6 mJ/cm? in the cir-
cumferential direction and 7.6 + 2.7 mJ/cm? in the longitudinal di-
rection; the difference was explained by the alignment of components
like collagen fibers and smooth muscle cells.

In regard to imaging techniques allowing the investigation of the
microstructure of arterial wall, multiphoton microscopy is widely used.
This technique enables the observation of the sample at fiber-scale
(with a resolution of about one micron) but it is limited by a small
volume of observation (approximately 500 X 500 x 200 pm®) (Krasny
et al., 2017). Some groups have used X-ray tomography to investigate
the microstructural architecture of vascular soft tissues. Phase contrast
techniques provides a good resolution and contrast with a wide field of
view; however, samples have to be embedded and the time required to
obtain images is extremely long, preventing in situ testing (Walton
et al., 2015). Some authors compared different contrast agents to ob-
serve microstructural components like collagen, but the samples were
unloaded (Nierenberger et al., 2015).

In a previous study, an X-ray tomography experiment taking ad-
vantage of the versatility of the technique to perform in situ tensile
testing was developed. Using a specific staining technique and a specific
tensile machine, this study provided unprecedented observations of
medial tissue under tension, and a meso-scale description of medial
rupture, possibly constituting a model for in vitro dissection
(Helfenstein-Didier et al., 2018).

In the context of aortic dissections, modeling rupture has been a
challenge and only a few models have been published in the literature.
Gasser and Holzapfel (2006) developed a non-linear continuum fra-
mework composed of a continuous material and a cohesive material.
The continuous material was modeled as a fiber-reinforced composite
with collagen fibers embedded in a non-collagenous isotropic ground
matrix. The two materials were independent from each other. The
framework was then implemented in a finite element model to re-
produce a peeling test and investigate the propagation of arterial dis-
section. Ferrara and Pandolfi (2010) presented a numerical model of
dissection based on cohesive fracture theory. The model was im-
plemented in a numerical simulation of a peeling test. A sensitivity
analysis was then performed to evaluate the influence of the cohesive
parameters driving the interlamellar propagation of the dissection in
the media and the influence of the reinforcing collagen fibers on the
separation of the layers. Wang et al. (2015) proposed a computational
model to study the propagation of a tear in a fiber-reinforced tissue. The
energy release rate was calculated, allowing them to determine the
values of pre-existing tear length and internal pressure needed to pro-
pagate the tear. The effect of fiber orientation and surrounding con-
nective tissues were also investigated. Later, Wang et al. (2017) de-
veloped a residually stressed two-layer arterial model. The material
properties were modeled using the Gasser-Ogden-Holzapfel model, and
the propagation of the tear was described with a linear traction-se-
paration law. The extended finite element method was used for the
simulation. The effect of residual stresses in the arterial wall on the
dissection propagation was investigated. Notably, these models studied
dissection at the scale of the whole wall. For a better understanding of
the phenomena involved in this disease, a lamellar-scale model is
needed.

The present study aimed at characterizing and quantifying the
mechanisms triggering and propagating a dissection in medial tissue.
To this aim, an analysis of the previously published experimental work
(Helfenstein-Didier et al., 2018) is proposed based on analytical and
numerical approaches using linear cohesive models, first introduced by
Dugdale and Barrenblatt (Barenblatt, 1962; Dugdale, 1960), and as
often used in commercial codes to model crack opening and rupture.
The approach was used to identify the cohesive model's parameters,
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Fig. 1. Schematic representation of the damage initiation and propagation
mechanism observed in situ. (a) intact sample, (b and c) initial radial crack,
opening in mode I, (d) elastic recoil of the ruptured layers, causing a mode II
longitudinal crack to form and propagate, (f, g, h ...) the process repeats until
complete failure of the sample. Modified from Helfenstein-Didier et al. (2018).

which were later used in a finite element (FE) model to assess the re-
lative influence of different crack propagation modes in the tissue.

2. Methods
2.1. Experimental data

In a previously published experimental study (Helfenstein-Didier
et al., 2018), uniaxial rupture tests were performed in situ on medial
layers of porcine aortic samples under X-ray micro-tomography. Briefly,
the technique required the use of sodium polytungstate as a contrast
agent, applied by immersing the samples in such a solution. This made
it possible to image the lamellar units in the tissue when performing 3D
scans of the samples. X-ray micro-tomography provided a mean to
monitor damage initiation, delamination and rupture of medial tissue
under tensile loading. The process was described as an elementary
process repeating several times until complete failure. This elementary
process initiated with a sudden mode I fracture (in the loading direc-
tion) of a group of lamellar units, followed by an elastic recoil of these
units, causing mode II separation creating a delamination plane as
shown in Fig. 1.

To build dissection models and identify their parameters, the qua-
litative observations made during the tensile tests performed up to
rupture were used, along with the force-displacement curves obtained
at the same time. Ten samples and their corresponding data were used
in the present study.

2.2. Analytical multi-layer cohesive model

A 1D analytical model was created to numerically reproduce the
uniaxial test responses of medial tissue. The dimensions taken into ac-
count (length, thickness and width of the rectangular samples) were
obtained from the X-ray tomography images (Helfenstein-Didier et al.,
2018). The model was composed of several layers in parallel, all layers
were assumed to have the same dimensions. Each layer represented a
group of several lamellar units, the number of groups was determined
based on the traction curve, as detailed in section 2.3 below. The be-
havior of each layer was governed by an incompressible hyperelastic
contribution and a cohesive contribution, both assumed to work in
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Fig. 2. Schematic representing the analytical model and its material para-
meters.

series (see Fig. 2). Note that this 1D model, can only include mode I
fracture; mode II will be addressed later in the proposed FE model.

Because the model primarily aims at studying the response at rup-
ture, the medial tissue was assumed to have an isotropic mechanical
behavior for the hyperelastic contribution which was modeled with an
incompressible second order reduced polynomial constitutive equation
(Rivlin, 1948). The strain energy function of this model was defined as:
¥=Cpoh —3)+ Co(h -3, (Eq. 1)
with C;o and C, the material parameters and I, the first deviatoric
strain invariant defined as I, = tr C. C = F'F is the deviatoric right
Cauchy-Green tensor and F is the deviatoric part of the deformation
gradient tensor.

The specificity of this analytical model of the media was to also
include a cohesive part in each layer. The objective was to reproduce
the damage initiation and evolution until total rupture observed during
the uniaxial tests. The motivation to use independent cohesive inter-
faces in each layer was that layers, comprising several lamellar units,
were observed not to break at the same time in our previous uniaxial
tests (Helfenstein-Didier et al., 2018). It was assumed that the cause of
this phenomenon was the presence of defects in the layers. Thus, to
reproduce different defects with different possible rupture thresholds,
cohesive interfaces were introduced, in series with the hyper-elastic
material. In this model, the global strain is equal to the strain in each
layer, and the global force is the sum of the contributions from all
layers. The response of a cohesive interface is illustrated in Fig. 3. Only
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Fig. 3. Cohesive behavior with the stress as a function of the opening of the
crack.

118

Journal of the Mechanical Behavior of Biomedical Materials 95 (2019) 116-123

traction (related to mode I of rupture) was taken into account in this 1D
model. Damage begins when the damage initiation criterion is met:
max [i] =1,
Oini (Eq 2)

where o (MPa) is the normal stress in the normal direction (ie. the
loading direction here) and o;,; is the damage initiation stress which
represents the peak value of the normal stress. Damage evolution was
defined by a decreasing linear law which describes the rate of de-
gradation of the cohesive zone stiffness. This law was defined based on
the fracture energy Gec which is the amount of energy dissipated during
the complete rupture of the cohesive zone. The choice of this cohesive
zone model was motivated by the study of Miao et al. (2018), which
compared the effects of four types of cohesive zone model shapes: tri-
angular, trapezoidal, linear-exponential and exponential-linear, on the
predictability of arterial wall failure. The results indicated that trian-
gular and exponential-linear cohesive zone models were able to re-
produce the aortic tissue failure behavior well, justifying the choice of
the simplest model in this study.

In summary, the constitutive response of the model under uniaxial
tension was governed by the following parameters:

® Cjo and Cy, the material parameters defining the hyperelastic be-
havior. They were identified by an inverse curve-fitting method (see
next section).

oimi, the damage initiation stress. In the present model, there were as
many damage initiation criteria as layers. They were set manually
based on the uniaxial tension curves.

G,, the critical fracture energy and is defined as the area under the
damage part of the cohesive response curve (Fig. 3). There were as
many critical fracture energies as layers. They were identified using
an inverse method (see section 2.3).

Niayer, the number of layers present in the analytical model (typi-
cally 1 to 5).

Using a Matlab® code, nominal stress and nominal strain were cal-
culated in each layer and the stress-strain curve of the whole model was
obtained. The next steps were (i) to validate the implementation of the
model (see next paragraph), and (ii) propose a strategy to identify the
parameters of the model based on experimental tensile curves (see next
section).

2.2.1. Model implementation validation

To validate the implementation of the analytical model, two finite
element models were built in Abaqus’. The first model consisted of a
single layer and the second model of two layers. The same dimensions
were used in the analytical model and the finite element models.
Cohesive zones were placed at the center of each layer to allow rupture
in traction. The hyperelastic and cohesive parameters were set at the
same values for the finite element and analytical models. Arbitrary, but
realistic, fixed parameters were used. The stress-strain curves of both
models were compared and the coefficients of determination, r?, were
calculated.

2.3. Inverse parameter identification

The following step of this study was an inverse analysis to obtain the
set of parameters fitted to the experimental curves. The method was
based on an cost function which quantifies the difference between the
result of the simulation and the experimental data, and on an optimi-
zation algorithm which finds the parameters minimizing this function.
The algorithm used here was described in Lagarias et al. (1998), and
was programmed within an in-house Matlab® code. Because the de-
veloped model involved many parameters to be identified for each
curve, a global optimization on the whole curve would have given non-
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Fig. 4. Example of experimental stress-strain curve, with manually selected
damage initiation points (represented by the arrows).

unique solutions. Instead, a three-step strategy based on separating the
elastic response and the post-damage initiation response was used, and
the damage initiation stresses were directly identified.

The first step aimed at identifying hyperelastic parameters C;o and
Coo. The cost function used in the optimization algorithm was defined
as follows:

N 2
(Gum — G
Cost Function = Z M,

1 N (Eq. 3)

where 0pum and Oy, were the model and experimental stress values at
the n™ point, respectively. N was the total number of points in the range
of strain observed experimentally on the stress-strain curves. Only the
undamaged part of the experimental curve (i.e. before any discontinuity
in the slope) was used for this identification.

The second step of the method consisted in a direct identification of
the different damage initiation stresses. This was performed by the
manual selection of break points in the slope of the experimental curves
(an example is shown Fig. 4), considering that break points correspond
to the rupture of one or multiple layers.

Last, the third step consisted in an inverse identification of the
critical fracture energies of each cohesive zone (there was one cohesive
zone per layer). To this aim, the same cost function as defined in Eq. (3)
was used, with n varying in the range of strain beyond elastic strain.
This identification provided the last set of parameters needed to
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completely define the model.

2.4. FE model to study the influence of mode II separation

During in vitro tensile tests, it was observed that layers initially
break in mode I and then separate from each other, in mode II
(Helfenstein-Didier et al., 2018). The analytical model presented above
was suitable to identify the rupture parameters in mode I but did not
allow for the identification of the parameters related to mode II. Thus, a
2D FE model that included delamination between layers was created
using Abaqus’. Its dimensions were kept the same as those of the ana-
lytical model. Cohesive zones were defined (i) in the middle of each
layer, in the transverse direction, to account for mode I separation, and
(ii) between layers, parallel to the loading direction, to account for
mode II separation which was not included in the analytical model.
Mode I cohesive properties of each layer were taken from the previous
analysis, but the weakest one was always chosen on the intimal side as
observed experimentally (Helfenstein-Didier et al., 2018). Regarding
mode II, a sensitivity analysis was performed to assess the influence of
mode II initiation criterion and fracture energy. Uniaxial tension
boundary conditions were applied. The mesh was comprised of 600
CPS4 elements (four-node plane stress element) and the quasi-static
problem was solved using the implicit solver of Abaqus®.

3. Results
3.1. Verification

The results of the verification of the analytical model against a finite
element implementation are presented in Fig. 5 for the one-layer model
(Fig. 5a) and the two-layer model (Fig. 5b). The comparison was fo-
cused on the nominal stress as a function of the total strain of the
specimen. In this work, only the nominal strain was considered.

The different parameters used in the verification are presented in
Table 1. For the one-layer model, the coefficient of determination r*
was 0.997 and for the two-layer model, 0.994, confirming proper im-
plementation of the analytical model.

3.2. Inverse identification of hyperelastic and cohesive parameters

Table 2 provides the values of all the parameters obtained following
the three-step identification procedure detailed in Section 2.3, for 10
experimental specimens tested in Helfenstein-Didier et al. (2018).

The comparisons between the analytical model and experimental
tensile test stress-strain curves exhibited a good quantitative agreement
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Fig. 5. Responses of analytical model (dashed curve) and finite element model (solid curve) with (a) one layer and (b) two layers, with the two peaks corresponding

to each layers damaging successively.
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Table 1
Parameters used during the verification with the one-layer model and the two-
layer model.

C10 (MPa) Czo (MPa) 0 ini (MPa) G, (MPa.mm)
Model with one layer
Layer 1 1 3 1 3
Model with two layers
Layer 1 1 3 1 2
Layer 2 1 3 2 6

considering that the 1 values were in a range of 0.97-0.99 (Fig. 6). It
can be observed that the global shape of the curves was well reproduced
by the model although the smallest slope-breaks were neglected.

A comparison between the experimental images from one test and
the model is presented in Fig. 7. The parameters of the model were
identified from the corresponding stress-strain curve. In the first step,
one can observe the undamaged media, then a first rupture on the in-
timal side corresponding to a change in slope on the stress-strain curve,
followed, in the third step, by a second rupture on the adventitial side of
the media and finally, in the fourth step, the remaining part of the
media damaging before complete rupture. Note that, in the last step, the
middle layer is in a partial damage state where §,,,x has not been
reached yet (Fig. 3). The finite element model shows a good qualitative
agreement with the X-ray images.

3.3. FE model to study the influence of mode II

The stress-strain curves obtained from the finite element simulations
including mode II separation in longitudinal cohesive zones are shown
in Fig. 8. The parameters of mode II used for the simulation are dis-
played on the graphs.

The simulation showed that, if the mode II damage initiation stress
was increased in the longitudinal cohesive zone, the two adjacent layers
of this zone would not separate. Instead, they formed a single unit
where the strongest layer (not broken in mode I) supported the weakest
one (already broken in mode I) and prevented its elastic recoil. Both
layers would recoil later, at the same time, when the strongest one
failed in mode I. This phenomenon can be seen from the dashed curve
in Fig. 8a where the global resistance of the model was increased but
the rupture was sudden. The latter observation would contradict the
experimental observations, which suggests that the resistance to mode
II separation in the longitudinal direction is probably one of the most
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influential factors in dissection-like propagation. Note however, that
the mode II critical fracture energy was found to have a relatively low
influence on the model response (Fig. 8b).

4. Discussion

This paper follows up on a series of experimental uniaxial tests
made on porcine medial aorta samples under X-ray tomography
(Helfenstein-Didier et al., 2018). These tests observed the media at the
lamellar-scale during damage progression and rupture and showed that
layers (i.e. a group of lamellar units) successively break in tension
(mode I) followed by a sudden delamination due to their elastic recoil
(mode II separation). These findings motivated this study aiming at
further understanding and quantifying these phenomena. An analytical
model was developed with the objective of reproducing the uniaxial
tests and identifying the different parameters in each layer relative to
rupture.

The implementation of the model was numerically verified against a
finite element model based on the same assumptions and parameters.
Subsequently, all parameters of the model were successfully identified
for each available experimental curve with the method described
herein. It is worth noting that these results did not differ when re-
peating the procedure several times on the same experimental curves,
showing the robustness of the method, even if part of this method re-
mains operator-dependent since the damage initiation stresses are set
manually.

For all experimental samples, the damage initiation stress and the
critical fracture energy were obtained for a finite number of layers
(structurally, these layers include several lamellar units). The values of
damage initiation stresses are in the range of maximum stresses found
in literature (750 kPa-2500kPa (Wolinsky and Glagov, 1967)). Re-
garding the critical fracture energy, it can be noted that a marked
variability between the different samples was obtained, which is mainly
attributable to the variability of the curves themselves as reported by
Helfenstein-Didier et al. (2018). Nevertheless, our study is, to the best
of our knowledge, the first to report experimentally-supported values of
mode I critical fracture energy at the lamellar-scale of aortic medial
tissue. They can serve as a basis to the development of numerical
models of arterial damage.

Because the analytical model did not take into account mode II
strength and separation of different layers, a finite element model was
built which included this phenomenon between layers. The same values

Table 2
Parameters obtained for all experimental curves.
Test Ci0 (MPa) Cyo (MPa) Oy 1 Oini 2 Oini 3 Oini 4 Oini 5 G.1 G, 2 G.3 G. 4 G.5
number (MPa) (MPa) (MPa) (MPa) (MPa) (MPa.mm) (MPa.mm) (MPa.mm) (MPa.mm) (MPa.mm)
1 0.00103 0.181 0.815 0.815 0.871 1.045 2.40 2.40 3.48 3.41
0.887 + 0.109 MPa 2.92 = 0.602 MPamm
2 0.758 3.06 2.81 3.44 4.30 6.61 9.24 9.08
3.52 = 0.744 MPa 8.31 = 1.48 MPamm
3 1.64 1.03 2.75 3.00 3.32 9.98 10.7 11.0
3.02 = 0.283 MPa 10.6 + 0.543 MPamm
4 0.125 0.0705 0.543 0.750 0.750 0.800 0.800 2.70 3.57 3.57 1.84 1.84
0.729 * 0.107 MPa 2.92 *+ 0.832 MPamm
5 0.210 0.0474 0.299 0.319 0.774 0.848 0.574 2.32 4.87 4.57
0.560 + 0.291 MPa 3.09 = 2.02MPamm
6 0.175 0.0331 0.686 0.742 0.759 0.759 4.52 4.19 1.93 1.93
0.737 + 0.0345 MPa 3.15 = 1.41 MPamm
7 0.184 0.0943 0.484 0.522 0.845 0.990 0.990 1.68 3.65 4.74 4.56 4.56
0.766 * 0.248 MPa 3.66 = 1.40 MPamm
8 0.196 0.00170 0.567 3.76
9 0.140 0.0574 0.484 0.524 0.549 2.37 2.09 1.029
0.519 + 0.0326 MPa 1.83 + 0.706 MPa mm
10 0.0744 0.0988 0.434 0.747 0.820 1.62 3.25 3.025
0.667 + 0.205MPa 2.63 = 0.884 MPamm
Mean 0j,; 1 (MPa) 0.988
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uniaxial tensile test under X-ray tomography at different time steps. The circles
highlight the visible sites of ruptures of layers. (b) Images of the finite element
model at the same time steps with the parameters corresponding to the case (a).
(c) Stress-strain curves of the test (a) and of the model response with the fitted
parameters.

of hyper-elasticity and mode I rupture were used as in the analytical
model, while for mode II, a sensitivity analysis on the associated values
was performed to assess the influence of mode II separation in this
mechanical rupture test. The analysis showed that the role of mode II is
essential in maintaining layers together. If mode II strength is too high,
two adjacent layers would not separate and they would recoil at the
same time when the strongest one fails in mode I. Our experiments
showed, however, that after breaking in mode I, a layer suddenly recoils
and separates from its neighbouring layer in a mode II separation. The
combination of these observations suggests that mode II separation may
play a major role in crack propagation, as occurring in dissection. More
specifically, our model confirmed that a first crack forms due to mode I
failure, which then propagates in mode I in the transverse direction
until the elastic recoil stress exceeds the mode II strength of a long-
itudinal plane. The crack will then propagate in the direction of less
energy, hence following this plane and forming a delamination plane,
as observed clinically and experimentally.

Several studies investigated the mechanisms of dissection using
different experiments. Tam et al. (1998) created blebs in the media by
injecting saline solution. Sommer et al. (2008), Wang et al. (2014), and
Witzenburg et al. (2017) used peeling test (hence mode I longitudinal
separation), which are probably more suitable for the analysis of dis-
section propagation when a relatively long flap is already formed, or for
plaque delamination. The present work is believed to be more appro-
priate for the onset of dissection. Pasta et al. (2012) demonstrated the
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Fig. 8. Comparison of the experiment and the finite element simulations to
investigate the influence of the delamination parameters g;,; and G.. (a) G is
fixed to 0.01 MPa mm while g;,; varies. When ¢;,;=0.005 MPa the three layers of
the finite element model broke successively like the experiment, when
0ini=0.05 MPa the two first layers of the finite element model broke at the same
time and the third layer broke later, and when c;,,=1 MPa the three layers broke
at the same time. (b) g;,; is fixed at 0.01 MPa while G, varies. The three curves
are relatively similar, this demonstrates the limited influence of G.

presence of radially-running fibers of collagen and elastin that create
“bridges” between lamellae and support the load induced by delami-
nation. Pal et al. (2014) proposed a predictive mechanistic model that
investigated the effect of these fibers and reproduced the response of
the peeling tests. The results showed that the number density and
failure energy of the radially-running collagen fibers to be the main
contributors to the delamination strength. However, the mode of rup-
ture in this study and in the present work are not the same. In the
delamination model of Pal et al. (2014), the fibers between the two
strips of the peeling test rupture in mode I, whereas in the present
model, the different layers separate from each other in mode II. From
the present work, it is hypothesized that the separation in mode I be-
tween layers would not be activated until a channel is formed and blood
rushes into that channel, thus pushing the layers apart. Mode II se-
paration would be the precursor to this channel formation.

As it was shown, delamination is triggered when the recoil of rup-
tured lamellar units induces shear stress which exceeds mode II strength
of the adjacent lamellar unit. Thus, the present study suggests that wall
defects may be directly involved in determining the initiation location
of the delamination process. Indeed, they could locally weaken this
mode II strength. In other words, it is likely that a disease or an intra-
mural hematoma already present at the beginning of the rupture of the
intima would promote dissection. It is even possible that the delami-
nation between lamellae has already been propagating when the
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intimal tear appears.

Limitations of this work are detailed herein. First, it was based on
uniaxial tests, while the in vivo loading corresponds to a biaxial or even
triaxial stress state. In a study closer to in vivo conditions of dissection,
this aspect should be considered by implementing a 3D model. Another
limitation of the present model based on cohesive zone modeling is that
the path of the crack is pre-defined. Here, all experimental observations
were consistent regarding the rupture pattern and our cohesive zones
were positioned accordingly (transverse and longitudinal). However, in
another loading configuration, a different configuration should be
considered.

This work provided valuable data toward the characterization of
arterial rupture at the lamellar-scale, which could be used in further
modeling endeavors. Also, it yielded useful insights into the determi-
nants and conditions that promote dissection in vivo. While additional
experimental validation is warranted to precisely address in vivo dis-
section conditions, this work opens a way to potentially important
clinical applications in monitoring patient-specific vascular risk factors,
and management of patients with dissection.
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